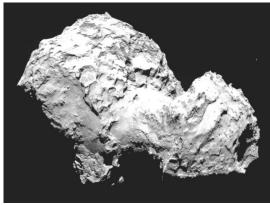

Fraverse

Comet Rubber Ducky

By Bob Moler

I had prepared a presentation for our July meeting on the two comets that will be in the news this summer and fall. However it was preempted. Several weeks of study and preparation shot to hell. However I was able to use an abbreviated version on the first comet with some additional graphics for the summer reading group at the Kalkaska County Library.

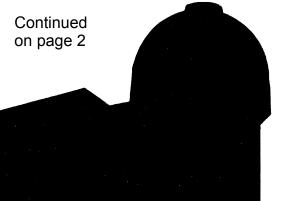
The first part of the talk was to be about the European Space Agency's (ESA) Rosetta mission to the Comet 67P/Churyumov–Gerasimenko or Comet C-G for short. I'll cover the second comet C/2013 A1 Siding Spring just before it side swipes Mars next month.

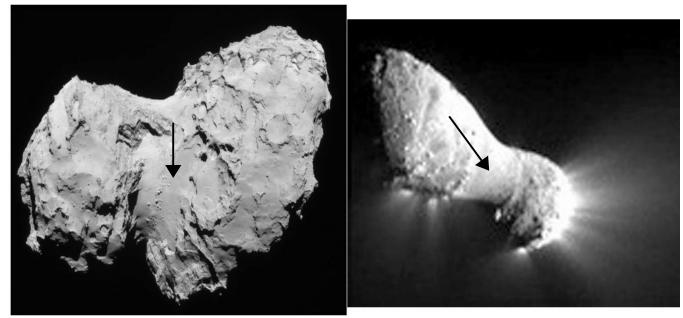


The "Rubber Ducky". Credit: European Space Agency

We were getting our first detailed look at the comet in early July. And lo and behold, it looked like a rubber ducky as reported by the "Bad Astronomer" Phil Plait and others. As Rosetta got closer surface detail began to appear. I concluded that the Rubber Ducky was really an "Ugly Duckling". The image

above shows the comet's nucleus as 30 pixels wide,


and the image was smoothed. For smoothed, read blurred.


The comet 3 days before reaching it. It kinda looks like an ugly ducking in this image. Credit ESA

The big surprise when the shape of the comet was revealed was that that it looks like two nuclei stuck together. However looking back at the few comet nuclei that have been visited, a large percentage of them seem to be compound objects. Comet Hartley 2 looks like a dog bone with a relatively thin waist between the two lobes. Comet Borrelly's nucleus looks like a bowling pin. The Soviet image of Halley's nucleus back in 1986 suggests a somewhat narrow waist between two lobes.

A look at the region of Comet C-G where the two lobes appear joined seem to have fine material deposited much like on Comet Hartley 2. Like Hartley 2 The neck of the ducky is a gravitational low area where loose stuff seems to settle.

Comet Rubber Ducky (From page 1)

Comparing Comet C-G on the left and Comet Hartley 2. Notice how parts of the neck of the ducky is smooth, like the narrow part of Hartley. Credits: ESA and NASA.

The Rosetta folks are scanning the surface, looking for a landing spot for the Philae lander. Despite the roughness of the terrain, quite a few potential landing sites have been found. As of August 25th, ESA announced that the search was down to five landing sites.

Rosetta, as of August 6th, has entered a kind of an orbit around the comet's nucleus. It is not a sustainable orbit, but one that is triangular. The comet's gravitational pull is almost non-existent. As it is the spacecraft's velocity with respect to the comet is best be described as a walk. It's still too fast not to fly off. As the spacecraft makes it's 120 degree tweaks, three times an orbit, it is slowly moving closer to the nucleus.

The official ESA Rosetta website is not always the most helpful. Most scientific results will not be released less than a year from the observations. Even NASA has a similar policy. I find that Emily Lakdawalla blogging for the Planetary Society usually has the best unofficial analysis of the images. She is a planetary geologist and an excellent communicator. Here's a link to her tour of the comet's nucleus: http://www.planetary.org/blogs/emily-lakdawalla/2014/08150814-finding-my-way-around-cg.html.

If you receive the Stellar Sentinel via email you will receive an Adobe Acobat (PDF) copy of the newsletter. It can be printed, or viewed on the computer screen. Hyperlinks like the one above can be clicked on to directly link to the page. If you email your email address to info@gtastro you will receive the pdf copy of this issue to start you off plus be enrolled to receive better quality issues with even more content that can be squeezed into 8 pages.

Grand Traverse Astronomical Society - Est. June 1982 – 32 years of service

Officers		Directors	S.S Staff	Patrons	
President	Ron Uthe	Jerry Dobek		Mick Glasser	
Vice President	Dave Kane	Bill Renis	LCC ICIIIS	HG & Autumn Smith	
Secretary	Don Flegel	Joe Brooks		Bill Hathaway Ronald & Jan Uthe	
Treasurer	Gary Carlisle	Richard Kuschell		Nancy Hammond	
Editor	Bob Moler			Charles Bell	

Society Events

Check http://www.gtastro.org for late breaking events.

Beptember

5 Friday **Board of Directors** – 7 p.m. - NMC Rogers Observatory

General Meeting – 8 p.m. - NMC Rogers Observatory.

Star Party: 9 p.m. - 11 p.m. - NMC Rogers Observatory.

6 Saturday International Observe the Moon Night 200 block of Front St near Orvis Streamside

13 Saturday Star Party – 9-11 p.m. - Sleeping Bear Dunes, Dune Climb Parking Lot

20 Saturday Leland Heritage Celebration – River St. Leland – 9 a.m. - 5 p.m.

Star Party – 9 p.m. - 11 p.m. - NMC Rogers Observatory.

27 Saturday Acme Fall Festival - Flint Fields Horse Park on Bates Rd. N of M72 - 10 a.m. - 5 p.m.

October

4 Saturday! **Board of Directors** – 7 p.m. - NMC Rogers Observatory

General Meeting – 8 p.m. - NMC Rogers Observatory.

Star Party – 9 p.m. - 11 p.m. - NMC Rogers Observatory. Fall Astronomy Day.

8 Wednesday **Total Lunar Eclipse** – 5 - 8 a.m. Rogers Observatory & Sleeping Bear Dunes – Platte

River Point

18 Saturday Star Party – 9 p.m. - 11 p.m. - NMC Rogers Observatory.

21 Tuesday 44th Anniversary Star Party at Sleeping Bear Dunes National Lakeshore – 8 p.m. - 10

p.m.

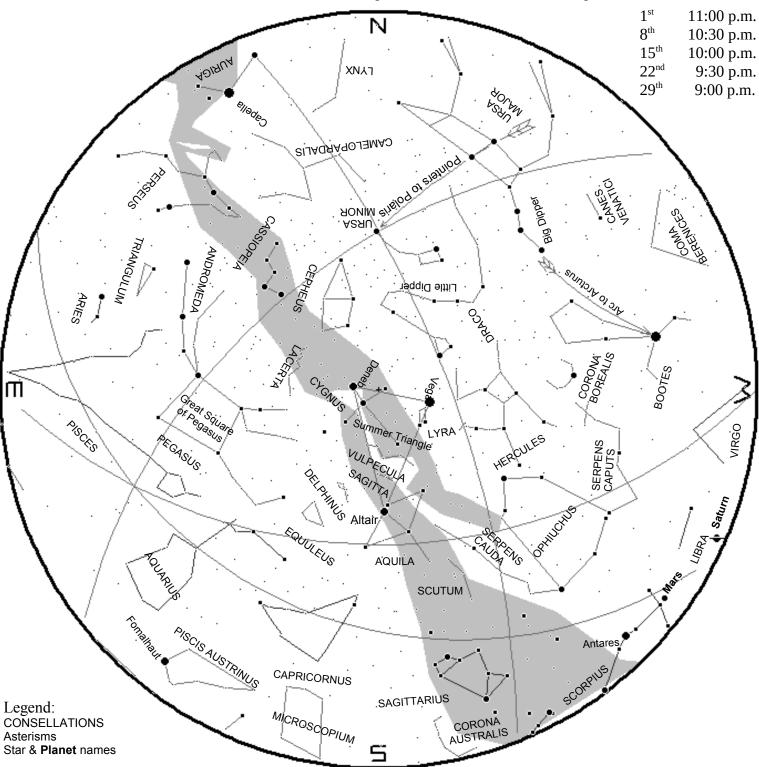
23 Thursday Solar Eclipse at sunset – 5 p.m. - 6:45 p.m. Rogers Observatory & Sleeping Bear Dunes

- Platte River Point

----- Star Parties -----

Rogers Observatory star parties for the rest of 2014: 9/5, 9/20, 10/4, 10/18, 11/7, 11/15, 12/5. Eclipses: 10/8 lunar a.m., 10/23 solar p.m.

Sleeping Bear Dunes star parties for the rest of 2014: 9/13, 10/21. Eclipses: 10/8 lunar a.m., 10/23 solar p.m.

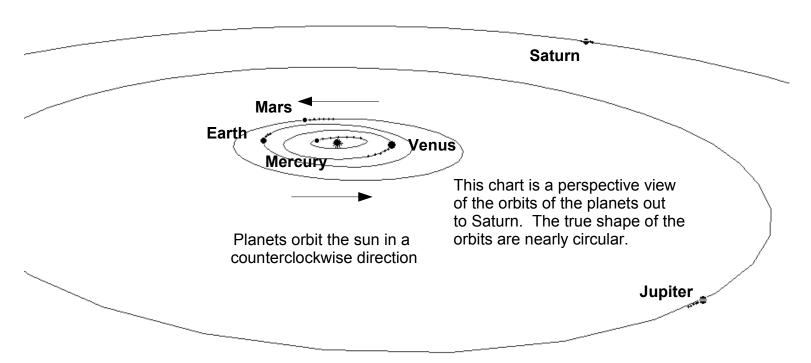

----- Some of the best objects for public viewing in September -----

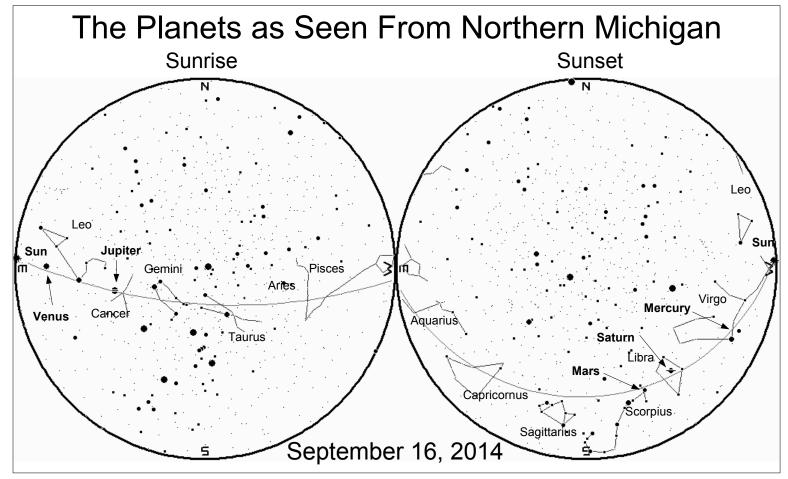
Planetary Object(s): Mars, Saturn

Deep Sky Object, description, constellation, distance		Declin.
Deep Sky Object, description, constenation, distance	hr. min.	0 1
M 13: Great Hercules globular cluster, Her, 25k l.y.	16 41.7	+36 28
M 57: Ring Nebula (planetary), Lyr, 1500 l.y.	18 53.6	+33 02
Alberio (β Cygni): Gold and blue double star, Cyg, 160 l.y., actual separation = 400b miles	19 30.3	+27 43
M 11: A great open (galactic) star cluster, Sct, 5.5k l.y.	18 50.0	-06 16
M 27: Dumbbell nebula (planetary), Vul, 900 l.y.	19 58.8	+22 43
M 8: Lagoon Nebula (Emission Nebula) with cluster NGC 6530, Sgr, about 5K l.y.	18 03.8	-24 23
M 16: Cluster and Eagle Nebula, Ser, 8k l.y.	18 18.8	-13 47
M 17: Swan Nebula (a.k.a. Horseshoe and Omega), Sgr, 5.7k l.y.	18 20.8	-16 11
M 22: Bright, large globular cluster, Sgr, 10.6k l.y.	18 36.4	-23 54
Note: The rest of the objects for viewing are located in the emailed edition of the Stellar Sen	tinel.	

The Stars and Planets for September 2014

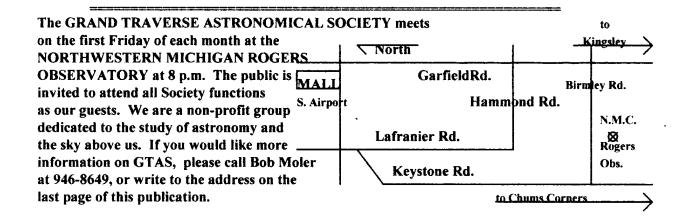
By Bob Moler Planets are plotted for mid month. The star positions are correct for:




September is second only to August as the greatest month to view the stars, in my humble opinion. That's because summer Milky Way extends to the south southwestern horizon showing us still the great star fields in Sagittarius and Scutum. A pair of binoculars are all that is necessary to scan the milky band for deep sky wonders such as star clusters and nebulae, both bright and dark. Chart time at mid month is 10 p.m. in tune with the sunset and twilight end times which are decreasing. This will soon give us colder weather, but for now it gives us darker skies at a reasonable hour. At chart time Saturn and Mars will be very low in the southwest. On the 27th Mars will be directly north of Antares, the "Rival of Mars".

The Naked Eye Planets

September 1st, 6th, 11th, 16th, 21st, 26th, & October 1st



Celestial Calendar

```
7:11 a.m. FIRST QUARTER MOON
Sep 02
    05
         4 p.m.
                   Venus at Perihelion
    05
         7 p.m.
                   GTAS Board Meeting
    05
         8 p.m.
                   GTAS Monthly Meeting
    05
         9 p.m.
                   Star Party at NMC Observatory
                   International Observe the Moon Night @ Front St, T.C.
    06
         9 p.m.
    07
        11:29 p.m. Moon at Perigee: 358388 km
    0.8
         9:38 p.m. FULL MOON Harvest Moon
    11
         3:32 a.m. Moon at Descending Node
    11
         6 p.m.
                   Mercury at Aphelion
                   Star Party @ Sleeping Bear Dunes Dune Climb
    13
         9 p.m.
    14
         9:01 p.m. Aldebaran 1.4°S of Moon
    15
        10:05 p.m. LAST QUARTER MOON
         6:39 a.m. Jupiter 5.4°N of Moon
    20
         9:56 a.m. Mercury 0.5°S of Spica
    20
    20
        10 a.m.
                   Leland Heritage Celebration @ Leland
    20
        10:22 a.m. Moon at Apogee: 405846 km
    20
                   Star Party at NMC Observatory
         9 p.m.
         2:52 p.m. Regulus 4.7°N of Moon
    2.1
    2.1
         6 p.m.
                   Mercury at Greatest Elongation: 26.4°E
    22
        10:30 p.m. Autumnal Equinox
         2:14 a.m. NEW MOON
    24
         1:41 p.m. Moon at Ascending Node
    2.5
         8:48 p.m. Spica 2.6°S of Moon
    25
         5:32 a.m. Mercury 4.2°S of Moon
    26
                   Acme Fall Festival, Acme
    27
        10 a.m.
       12:46 a.m. Saturn 0.8°S of Moon: Occn.
    2.8
         2:26 a.m. Mars 3.0°N of Antares
    28
         1:01 p.m. Mars 5.6°S of Moon
    29
```

Calendar of Astronomical Events Courtesy of Fred Espenak, www.AstroPixels.com

September, 2014 - Local time zone: EDT										
Date Sun Twilight* Moon Illum										
		Rise	Set	Hours	End	Start	Phase	R/S**	Time	Fractn
Mon	1	07:04a	08:19p	13:14	10:03p	05:20a		Set	12:02a	45%
Tue	2	07:06a	08:17p	13:11	10:00p	05:21a	F Qtr	Set	12:52a	56%
Wed	3	07:07a	08:15p	13:08	09:58p	05:23a		Set	01:50a	67%
Thu	4	07:08a	08:13p	13:05	09:56p	05:25a		Set	02:56a	77%
Fri	5	07:09a	08:11p	13:02	09:54p	05:26a		Set	04:07a	86%
Sat	6	07:10a	08:09p	12:59	09:52p	05:28a		Set	05:21a	93%
Sun	7	07:11a	08:08p	12:56	09:49p	05:29a		Set	06:38a	98%
Mon	8	07:13a	08:06p	12:53	09:47p	05:31a	Full	Rise	07:44p	100%
Tue	9	07:14a	08:04p	12:49	09:45p	05:32a		Rise	08:19p	99%
Wed	10	07:15a	08:02p	12:46	09:43p	05:34a		Rise	08:54p	95%
Thu	11	07:16a	08:00p	12:43	09:41p	05:35a		Rise	09:30p	88%
Fri	12	07:17a	07:58p	12:40	09:39p	05:37a		Rise	10:08p	80%
Sat	13	07:19a	07:56p	12:37	09:36p	05:38a		Rise	10:49p	71%
Sun	14	07:20a	07:54p	12:34	09:34p	05:40a		Rise	11:33p	61%
Mon	15	07:21a	07:53p	12:31	09:32p	05:41a	L Qtr	Rise	12:21a	51%
Tue	16	07:22a	07:51p	12:28	09:30p	05:42a		Rise	01:12a	41%
Wed	17	07:23a	07:49p	12:25	09:28p	05:44a		Rise	02:06a	32%
Thu	18	07:24a	07:47p	12:22	09:26p	05:45a		Rise	03:02a	23%
Fri	19	07:26a	07:45p	12:19	09:24p	05:47a		Rise	03:59a	16%
Sat	20	07:27a	07:43p	12:16	09:22p	05:48a		Rise	04:56a	10%
					ı			I		
Sun	21	07:28a	07:41p	12:13	09:20p	05:49a		Rise	05:55a	5%
Mon	22	07:29a	07:39p	12:10	09:17p	05:51a		Rise	06:54a	2%
Tue	23	07:30a	07:37p	12:07	09:15p	05:52a		Rise	07:53a	0%
Wed	24	07:31a	07:36p	12:04	09:13p	05:53a	New	Set	07:43p	1%
Thu	25	07:33a	07:34p	12:01	09:11p	05:55a		Set	08:13p	3%
Fri	26	07:34a	07:32p	11:58	09:09p	05:56a		Set	08:45p	7%
Sat	27	07:35a	07:30p	11:54	09:07p	05:57a		Set	09:21p	13%
Sun	28	07:36a	07:28p	11:51	09:05p	05:59a		Set	10:02p	21%
Mon	29	07:30a 07:37a	07.28p	11:48	09:03p	05.39a 06:00a		Set	10:02p	31%
Tue	30	07:37a 07:39a	07:26p 07:24p		09:03p	06:00a 06:01a		Set		41%
		ical Twil		11:45	09.01p	00.01a		Set	11:43p	4170

	Grand Traverse Asirc	monnicai Soci	ety – Membership Appheation 2	2014			
I am	interested, please send me n	nore information	about the next GTAS meeting.				
I'll join, payment enclosed Membership renewal		Email Addre	Email Address:				
			Newsletter Delivery: Email Interests:				
Name: _							
Address:							
	Street	City	State	ZIP			
Dues: _	Single Membership	\$25.00/yr	Mail check to: G.T.A.S.				
	_ Family	\$30.00/yr	Gary Carlisle, Treasurer				
_	Student (up to 18 years ag	(e)\$15.00/yr	1473 Birmley Road				
			Traverse City, MI 49686				

ENROLLED TO PRACTICE BEFORE THE IRS

CARLISLE'S CREATIVE ACCOUNTING

GARY E, CARLISLE ACCOUNTANT TAX PRACTITIONER 1473 BIRMLEY ROAD TRAVERSE CITY, MI 49684 (131) 929-4451

Great Lakes Bees and Supplies

Pollination, Honey and Bee Supplies

Millie Hathaway

(231)271-6243

P.O. Box 333

Suttons Bay, MI 49682

WANTED: Astronomers interested in working with Project ASTRO POLARIS.

Willingness to work with K-12 students and teachers. Visiting classrooms and conducting experiments, discussing astronomy interests and events. Sharing your love of astronomy with others. Will provide; training, materials, instuctionals and support. Please contact: Jerry Dobek Site Coordinator Project ASTRO POLARIS NMC Science & Math 1701 East Front Street Traverse City, MI 49686 email jdobek@nmc.edu phone 946-1787 obsv. 223-4545 home

Giant Astronomical Binoculars Astronomical Telescopes

bν

Orion & Celestron

Call and ask for Dick Enerdyne

212 St. Joseph Suttons Bay 231 -271-6033

The Stellar Sentinel Bob Moler, Editor 6003 Secor Rd. Traverse City, MI 49685

Stellar Sentinel Extras for September 2014

This Month's Space Place Article

Droughts, Floods and the Earth's Gravity, by the GRACE of NASA

By Dr. Ethan Siegel

When you think about gravitation here on Earth, you very likely think about how constant it is, at 9.8 m/s² (32 ft/s²). Only, that's not quite right. Depending on how thick the Earth's crust is, whether you're slightly closer to or farther from the Earth's center, or what the density of the material beneath you is, you'll experience slight variations in Earth's gravity as large as 0.2%, something you'd need to account for if you were a pendulum-clock-maker.

But surprisingly, the amount of *water content* stored on land in the Earth actually changes the gravity field of where you are by a significant, measurable amount. Over land, water is stored in lakes, rivers, aquifers, soil moisture, snow and glaciers. Even a change of just a few centimeters in the water table of an area can be clearly discerned by our best space-borne mission: NASA's twin Gravity Recovery and Climate Experiment (GRACE) satellites.

Since its 2002 launch, GRACE has seen the water-table-equivalent of the United States (and the rest of the world) change significantly over that time. Groundwater supplies are vital for agriculture and provide half of the world's drinking water. Yet GRACE has seen California's central valley and the southern high plains rapidly deplete their groundwater reserves, endangering a significant portion of the nation's food supply. Meanwhile, the upper Missouri River Basin—recently home to severe flooding—continues to see its water table rise.

NASA's GRACE satellites are the only pieces of equipment currently capable of making these global, precision measurements, providing our best knowledge for mitigating these terrestrial changes. Thanks to GRACE, we've been able to quantify the water loss of the Colorado River Basin (65 cubic kilometers), add months to the lead-time water managers have for flood prediction, and better predict the impacts of droughts worldwide. As NASA scientist Matthew Rodell says, "[W]ithout GRACE we would have no routine, global measurements of changes in groundwater availability. Other satellites can't do it, and ground-based monitoring is inadequate." Even though the GRACE satellites are nearing the end of their lives, the GRACE Follow-On satellites will be launched in 2017, providing us with this valuable data far into the future. Although the climate is surely changing, it's water availability, *not* sea level rise, that's the largest near-term danger, and the most important aspect we can work to understand!

Stellar Sentinel Extras for September 2014

Learn more about NASA's GRACE mission here: http://www.nasa.gov/mission_pages/Grace/

Kids can learn al about launching objects into Earth's orbit by shooting a (digital) cannonball on NASA's Space Place website. Check it out at: http://spaceplace.nasa.gov/how-orbits-work/

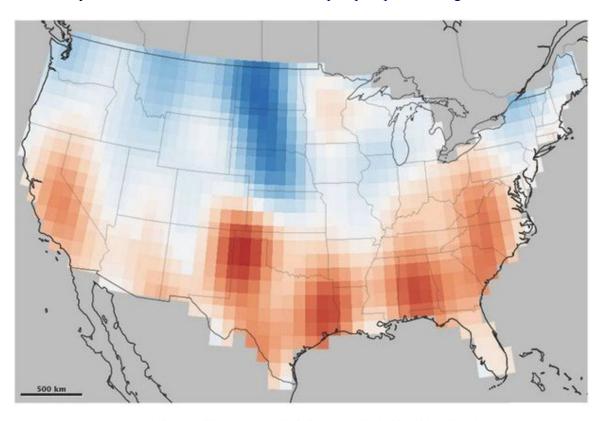


Image credit: NASA Earth Observatory image by Jesse Allen, using GRACE data provide courtesy of Jay Famigleitti, University of California Irvine and Matthew Rodell, NASA Goddard Space Flight Center. Caption by Holli Riebeek.

Stellar Sentinel Extras for September 2014

Some of the best objects for public viewing in September

Planetary Object(s): Mars, Saturn (very early)

Deen Slaw Object description constellation distance	Rt. Asc.	Declin.
Deep Sky Object, description, constellation, distance	hr. min.	0 '
M 13: Great Hercules globular cluster, Her, 25k l.y.	16 41.7	+36 28
M 57: Ring Nebula (planetary), Lyr, 1500 l.y.	18 53.6	+33 02
Alberio (β Cygni): Gold and blue double star, Cyg, 160 l.y., actual separation = 400b miles	19 30.3	+27 43
M 11: A great open (galactic) star cluster, Sct, 5.5k l.y.	18 50.0	-06 16
M 27: Dumbbell nebula (planetary), Vul, 900 l.y.	19 58.8	+22 43
M 8: Lagoon Nebula (Emission Nebula) with cluster NGC 6530, Sgr, about 5K l.y.	18 03.8	-24 23
M 16: Cluster and Eagle Nebula, Ser, 8k l.y.	18 18.8	-13 47
M 17: Swan Nebula (a.k.a. Horseshoe and Omega), Sgr, 5.7k l.y.	18 20.8	-16 11
M 22: Bright, large globular cluster, Sgr, 10.6k l.y.	18 36.4	-23 54
M 31: Great Andromeda Galaxy, And, 2.3m l.y.	00 42.7	+41 16
M52: Rich open cluster, Cas,5.5k l.y.	23 24.2	+61 35
Almach (γ Andromedae): Yellow and greenish-blue double star, And, 260 l.y.	02 03.2	+42 17
χ & h Persei: Double Cluster, Per, 7k l.y.; χ Per, 8.1k l.y.	02 20.0	+57 08
M 2: Globular cluster, Aqr, 50k l.y.	21 33.5	-00 49
M 15: Compact globular cluster, Peg, 34-39k l.y.	21 30.0	+12 10

Mars and its rival get together on the 27th

The planet Mars will officially be in conjunction with the star Antares, "The Rival of Mars" in color on September 28th, early in the morning, which makes the evening of the 27th the best time to see them at their closest. Mars will be a bit more than 3 degrees above and right of Antares. Both are nearly the same magnitude, but Antares will appear a bit dimmer because it's lower in the sky. At 8:30 p.m. Antares will be about 10 degrees altitude in the west southwest. The moon will be a thin crescent.

Mars and Antares at 8:30 p.m. September 27 from the Grand Traverse area. Created using Stellarium.